
Final Exam

 Thursday, 7 August 2014,19:00 – 22:00

 Closed Book

 Will cover whole course, with emphasis on material after

midterm (hash tables, binary search trees, sorting,

graphs)

Suggested Study Strategy

 Review and understand the slides.

 Read the textbook, especially where concepts and methods are not

yet clear to you.

 Do all of the practice problems provided.

 Do extra practice problems from the textbook.

 Review the midterm and solutions for practice writing this kind of

exam.

 Practice writing clear, succinct pseudocode!

 Review the assignments

 See me or one of the TAs if there is anything that is still not clear.

Assistance

 Regular office hours will not be held

 You may me by email / Skype

End of Term Review

Summary of Topics

1. Binary Search Trees

2. Sorting

3. Graphs

Topic 1. Binary Search Trees

Binary Search Trees

 Insertion

 Deletion

 AVL Trees

 Splay Trees

Binary Search Trees

 A binary search tree is a binary tree storing key-value entries at its

internal nodes and satisfying the following property:

 Let u, v, and w be three nodes such that u is in the left subtree of v and w is

in the right subtree of v. We have key(u) key(v) key(w)

 The textbook assumes that external nodes are ‘placeholders’: they do

not store entries (makes algorithms a little simpler)

 An inorder traversal of a binary search trees visits the keys in

increasing order

 Binary search trees are ideal for maps or dictionaries with ordered

keys. 6

92

41 8

38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

Binary Search Tree

All nodes in left subtree ≤ Any node ≤ All nodes in right subtree

≤≤ ≤

Search: Define Step

 Cut sub-tree in half.

 Determine which half the key would be in.

 Keep that half.

key 17

38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

If key < root,

then key is

in left half.

If key > root,

then key is

in right half.

If key = root,

then key is

found

Insertion (For Dictionary)

 To perform operation insert(k, o), we search for key k (using

TreeSearch)

 Suppose k is not already in the tree, and let w be the leaf

reached by the search

 We insert k at node w and expand w into an internal node

 Example: insert 5

6

92

41 8

6

92

41 8

5

<

>

>

w

w

Insertion

 Suppose k is already in the tree, at node v.

 We continue the downward search through v, and let w be

the leaf reached by the search

 Note that it would be correct to go either left or right at v.

We go left by convention.

 We insert k at node w and expand w into an internal node

 Example: insert 6

6

92

41 8

6

92

41 8

6

<

>

>

w

w

Deletion

 To perform operation remove(k), we search for key k

 Suppose key k is in the tree, and let v be the node storing k

 If node v has a leaf child w, we remove v and w from the tree

with operation removeExternal(w), which removes w and its

parent

 Example: remove 4

6

92

41 8

5

v

w

6

92

51 8

<

>

Deletion (cont.)

 Now consider the case where the key k to be removed is stored at a

node v whose children are both internal

 we find the internal node w that follows v in an inorder traversal

 we copy the entry stored at w into node v

 we remove node w and its left child z (which must be a leaf) by means of

operation removeExternal(z)

 Example: remove 3

3

1

8

6 9

5

v

w

z

2

5

1

8

6 9

v

2

Performance

 Consider a dictionary with n items implemented by means of
a binary search tree of height h

 the space used is O(n)

methods find, insert and remove take O(h) time

 The height h is O(n) in the worst case and O(log n) in the
best case

 It is thus worthwhile to balance the tree (next topic)!

AVL Trees

AVL trees are balanced.

An AVL Tree is a binary search tree in which the

heights of siblings can differ by at most 1.

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

height

0

0 0

0 0
0 0

0 0

Height of an AVL Tree

 Claim: The height of an AVL tree storing n keys is O(log n).

Insertion

 Imbalance may occur at any ancestor of the inserted node.

Insert(2)

7

4

3

0

1

2

height = 3

8

0 0

1

0

2

2

0

10

0

5

0

1

0

7

4

3

3

height = 4

8

0 0

1

5

0

1

0

Problem!

Insertion: Rebalancing Strategy

 Step 1: Search

 Starting at the inserted node, traverse toward

the root until an imbalance is discovered.

0

2

2

0

1

7

4

3

3

height = 4

8

0 0

1

5

0

1

0

Problem!

Insertion: Rebalancing Strategy

 Step 2: Repair

 The repair strategy is called trinode

restructuring.

 3 nodes x, y and z are distinguished:

z = the parent of the high sibling

y = the high sibling

x = the high child of the high sibling

We can now think of the subtree

rooted at z as consisting of these 3

nodes plus their 4 subtrees 0

2

2

0

1

7

4

3

3

height = 4

8

0 0

1

5

0

1

0

Problem!

Insertion: Trinode Restructuring Example

x

z

y

height

= h

T0 T1

T2

T3

h-1 h-3

h-2

one is h-3 &

one is h-4

h-3

x z

y

T0 T1
T2

T3

h-1

h-3

h-2

one is h-3 &

one is h-4

h-3

h-2

Restructure

Note that y is the middle value.

Insertion: Trinode Restructuring - 4 Cases

 There are 4 different possible relationships between the

three nodes x, y and z before restructuring:

x

z

y

height

= h

T0 T1

T2

T3

h-1 h-3

h-2

one is h-3 & one is h-

4

h-3 x

z

y

height

= h

T3T2

T1

T0

h-1h-3

h-2

one is h-3 & one is h-

4

h-3 x

z

y

height

= h

T1 T2

T0

T3

h-1 h-3

h-2

one is h-3 & one is h-

4

h-3 x

z

y

height

= h

T2T1

T3

T0

h-1h-3

h-2

one is h-3 & one is h-

4

h-3

 x £ y £ z z £ y £ x y £ x £ z
 z £ x £ y

Insertion: Trinode Restructuring - The Whole Tree

 Do we have to repeat this process further up the tree?

 No!

 The tree was balanced before the insertion.

 Insertion raised the height of the subtree by 1.

 Rebalancing lowered the height of the subtree by 1.

 Thus the whole tree is still balanced.

x

z

y

height

= h

T
0

T
1

T
2

T
3

h-1 h-3

h-2

one is h-3 & one

is h-4

h-3

x z

y

T
0

T
1

T
2

T
3

h-1

h-3

h-2

one is h-3 & one

is h-4

h-3

h-2

Restructure

Removal

 Imbalance may occur at an ancestor of the removed node.

Remove(8)

7

4

3

0

1

2

height = 3

8

0 0

1

0

1

0

5

0

1

0

7

4

3

2

height = 3

0

5

0

1

0

Problem!

0

Removal: Rebalancing Strategy

 Step 1: Search

 Starting at the location of the removed node,

traverse toward the root until an imbalance is

discovered.

0

1

0

7

4

3

2

height = 3

0

5

0

1

0

Problem!

Removal: Rebalancing Strategy

 Step 2: Repair

We again use trinode restructuring.

 3 nodes x, y and z are distinguished:

z = the parent of the high sibling

y = the high sibling

x = the high child of the high sibling (if

children are equally high, keep chain

linear)

0

1

0

7

4

3

2

height = 3

0

5

0

1

0

Problem!

Removal: Rebalancing Strategy

 Step 2: Repair

 The idea is to rearrange these 3 nodes so

that the middle value becomes the root

and the other two becomes its children.

 Thus the linear grandparent – parent –

child structure becomes a triangular

parent – two children structure.

 Note that z must be either bigger than

both x and y or smaller than both x and

y.

 Thus either x or y is made the root of this

subtree, and z is lowered by 1.

 Then the subtrees T0 – T3 are attached at

the appropriate places.

 Although the subtrees T0 – T3 can differ in

height by up to 2, after restructuring,

sibling subtrees will differ by at most 1.

x

z

y

height

= h

T0 T1

T2

T3

h-1 h-3

h-2

h-3 or h-3 & h-

4

h-2

or

h-3

Removal: Trinode Restructuring - 4 Cases

 There are 4 different possible relationships between the

three nodes x, y and z before restructuring:

x

z

y

height

= h

T0 T1

T2

T3

h-1 h-3

h-2

h-3 or h-3 & h-4

h-2

or h-

3

x

z

y

height

= h

T3T2

T1

T0

h-1h-3

h-2

h-3 or h-3 & h-4

h-2

or h-

3

x

z

y

height

= h

T1 T2

T0

T3

h-1 h-3

h-2

h-3 or h-3 & h-4

h-2

or h-

3

x

z

y

height

= h

T2T1

T3

T0

h-1h-3

h-2

h-3 or h-3 & h-4

h-2

or h-

3

 x £ y £ z z £ y £ x y £ x £ z
 z £ x £ y

Removal: Trinode Restructuring - Case 1

x

z

y

height

= h

T0 T1

T2

T3

h-1 h-3

h-2

h-3 or h-3 & h-

4

h-2

or

h-3

x z

y

T0 T1
T2

T3

h

or

h-1

h-3

h-2

h-3 or h-3 & h-

4

h-2

or

h-3

h-1

or

h-2

Restructure

Note that y is the middle value.

Removal: Rebalancing Strategy

 Step 2: Repair

 Unfortunately, trinode restructuring may

reduce the height of the subtree, causing

another imbalance further up the tree.

 Thus this search and repair process must

be repeated until we reach the root.

Topic 2. Sorting

Sorting Algorithms

 Comparison Sorting

 Selection Sort

 Bubble Sort

 Insertion Sort

Merge Sort

 Heap Sort

 Quick Sort

 Linear Sorting

 Counting Sort

 Radix Sort

 Bucket Sort

Comparison Sorts

 Comparison Sort algorithms sort the input by successive

comparison of pairs of input elements.

 Comparison Sort algorithms are very general: they

make no assumptions about the values of the input

elements.

4 3 7 11 2 2 1 3 5

 e.g.,3 £11?

Sorting Algorithms and Memory

 Some algorithms sort by swapping elements within the

input array

 Such algorithms are said to sort in place, and require

only O(1) additional memory.

 Other algorithms require allocation of an output array

into which values are copied.

 These algorithms do not sort in place, and require O(n)

additional memory.

4 3 7 11 2 2 1 3 5

swap

Stable Sort

 A sorting algorithm is said to be stable if the ordering of

identical keys in the input is preserved in the output.

 The stable sort property is important, for example, when

entries with identical keys are already ordered by

another criterion.

 (Remember that stored with each key is a record

containing some useful information.)

4 3 7 11 2 2 1 3 5

1 2 2 3 3 4 5 7 11

Selection Sort

 Selection Sort operates by first finding the smallest

element in the input list, and moving it to the output list.

 It then finds the next smallest value and does the same.

 It continues in this way until all the input elements have

been selected and placed in the output list in the correct

order.

 Note that every selection requires a search through the

input list.

 Thus the algorithm has a nested loop structure

 Selection Sort Example

http://www.youtube.com/watch?v=hqBPYhAQeTI

Bubble Sort

 Bubble Sort operates by successively comparing

adjacent elements, swapping them if they are out of

order.

 At the end of the first pass, the largest element is in the

correct position.

 A total of n passes are required to sort the entire array.

 Thus bubble sort also has a nested loop structure

 Bubble Sort Example

http://www.youtube.com/watch?v=myKlT30nl5Y

Example: Insertion Sort

Merge Sort

88
14

9825
62

52

79

30
23

31
Split Set into Two

(no real work)

25,31,52,88,98

Get one friend to

sort the first half.

14,23,30,62,79

Get one friend to

sort the second half.

Merge Sort

Merge two sorted lists into one

25,31,52,88,98

14,23,30,62,79

14,23,25,30,31,52,62,79,88,98

Analysis of Merge-Sort

 The height h of the merge-sort tree is O(log n)

 at each recursive call we divide in half the sequence,

 The overall amount or work done at the nodes of depth i is O(n)

 we partition and merge 2i sequences of size n/2i

 we make 2i+1 recursive calls

 Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …

 T(n) = 2T(n / 2) +O(n)

Heap-Sort Algorithm

 Build an array-based (max) heap

 Iteratively call removeMax() to extract the keys in

descending order

 Store the keys as they are extracted in the unused tail

portion of the array

Heap-Sort Running Time

 The heap can be built bottom-up in O(n) time

 Extraction of the ith element takes O(log(n - i+1)) time

(for downheaping)

 Thus total run time is

T(n) = O(n) + log(n - i +1)
i =1

n

å

= O(n) + log i
i =1

n

å

£ O(n) + logn
i =1

n

å

= O(n logn)

Quick-Sort

 Quick-sort is a divide-and-

conquer algorithm:

 Divide: pick a random

element x (called a pivot)

and partition S into

L elements less than x

E elements equal to x

G elements greater than x

 Recur: Quick-sort L and G

 Conquer: join L, E and G

x

x

L GE

x

The Quick-Sort Algorithm

Algorithm QuickSort(S)

if S.size() > 1

(L, E, G) = Partition(S)

QuickSort(L)

QuickSort(G)

S = (L, E, G)

In-Place Quick-Sort

 Note: Use the lecture slides here instead of the textbook

implementation (Section 11.2.2)

88
14

9825
62

52

79

30
23

31

Partition set into two using

randomly chosen pivot

14

25
30

2331

88
98

62
79

≤ 52 ≤

Maintaining Loop Invariant

The In-Place Quick-Sort Algorithm

Algorithm QuickSort(A, p, r)

if p < r

q = Partition(A, p, r)

QuickSort(A, p, q - 1)

QuickSort(A, q + 1, r)

Summary of Comparison Sorts

Algorithm Best

Case

Worst

Case

Average

Case

In

Place

Stable Comments

Selection n2 n2 Yes Yes

Bubble n n2 Yes Yes

Insertion n n2 Yes Yes Good if often almost sorted

Merge n log n n log n No Yes Good for very large datasets that

require swapping to disk

Heap n log n n log n Yes No Best if guaranteed n log n required

Quick n log n n2 n log n Yes No Usually fastest in practice

Comparison Sort: Decision Trees

 For a 3-element array, there are 6 external nodes.

 For an n-element array, there are external nodes. n!

Comparison Sort

 To store n! external nodes, a decision tree must have a

height of at least

 Worst-case time is equal to the height of the binary

decision tree.

Thus T(n)ÎW logn!()

wherelogn! = log i
i =1

n

å ³ log n / 2êë úû
i =1

n / 2êë úû

å ÎW(n logn)

Thus T(n)ÎW(n logn)

Thus MergeSort & HeapSort are asymptotically optimal.

logn!éê ùú

Linear Sorts?

Comparison sorts are very general, but are (log)n n

 Faster sorting may be possible if we can constrain the nature of the input.

CountingSort

Input:

Output:

Index: 11109876543210 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3210

171450Location of next record

with digit v.

1

Algorithm: Go through the records in order

putting them where they go.

CountingSort

Input:

Output:

Index: 11109876543210 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3210

171460Location of next record

with digit v.

0

Algorithm: Go through the records in order

putting them where they go.

1

RadixSort

344

125

333

134

224

334

143

225

325

243

Sort wrt which

digit first?

Sort wrt which

digit Second?

The least

significant.

333

143

243

344

134

224

334

125

225

325

The next least

significant.

2 24

1 25

2 25

3 25

3 33

1 34

3 34

1 43

2 43

3 44

Is sorted wrt least sig. 2 digits.

Sort wrt i+1st

digit.

2 24

1 25

2 25

3 25

3 33

1 34

3 34

1 43

2 43

3 44

Is sorted wrt

first i digits.

1 25

1 34

1 43

2 24

2 25

2 43

3 25

3 33

3 34

3 44

Is sorted wrt

first i+1 digits.

i+1

These are in the

correct order

because sorted

wrt high order digit

RadixSort

Sort wrt i+1st

digit.

2 24

1 25

2 25

3 25

3 33

1 34

3 34

1 43

2 43

3 44

Is sorted wrt

first i digits.

1 25

1 34

1 43

2 24

2 25

2 43

3 25

3 33

3 34

3 44
i+1

These are in the

correct order

because was sorted &

stable sort left sorted

Is sorted wrt

first i+1 digits.

RadixSort

Example 3. Bucket Sort

 Applicable if input is constrained to finite interval, e.g.,

[0…1).

 If input is random and uniformly distributed, expected

run time is Θ(n).

Bucket Sort

Topic 3. Graphs

Graphs

 Definitions & Properties

 Implementations

 Depth-First Search

 Topological Sort

 Breadth-First Search

Properties

Notation

|V| number of vertices

|E| number of edges

deg(v) degree of vertex v

Property 1

v deg(v) = 2|E|

Proof: each edge is counted
twice

Property 2

In an undirected graph with no
self-loops and no multiple
edges

|E| ≤ |V| (|V| - 1)/2

Proof: each vertex has degree
at most (|V| 1)

Example

 |V| = 4

 |E| = 6

 deg(v) = 3

A : E £ V (V -1)

Q: What is the bound for a digraph?

Main Methods of the (Undirected) Graph ADT

 Vertices and edges

 are positions

 store elements

 Accessor methods

 endVertices(e): an array of the
two endvertices of e

 opposite(v, e): the vertex
opposite to v on e

 areAdjacent(v, w): true iff v and
w are adjacent

 replace(v, x): replace element at
vertex v with x

 replace(e, x): replace element at
edge e with x

 Update methods

 insertVertex(o): insert a vertex
storing element o

 insertEdge(v, w, o): insert an
edge (v,w) storing element o

 removeVertex(v): remove vertex
v (and its incident edges)

 removeEdge(e): remove edge e

 Iterator methods

 incidentEdges(v): edges
incident to v

 vertices(): all vertices in the
graph

 edges(): all edges in the graph

Running Time of Graph Algorithms

 Running time often a function of both |V| and |E|.

 For convenience, we sometimes drop the | . | in

asymptotic notation, e.g. O(V+E).

Implementing a Graph (Simplified)

Adjacency List Adjacency Matrix

Space complexity:

Time to find all neighbours of vertex :u

Time to determine if (,) : u v E

() +V E

(degree()) u

(degree()) u

2() V

() V

(1)

DFS Example on Undirected Graph

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge

back edge

A finished

A unexplored

unexplored edge

A being explored

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

DFS Algorithm Pattern

DFS(G)

Precondition: G is a graph

Postcondition: all vertices in G have been visited

for each vertex u ÎV [G]

color[u] = BLACK //initialize vertex

for each vertex u ÎV [G]

if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

total work

= q(V)

DFS Algorithm Pattern

DFS-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: all vertices reachable from u have been processed

colour[u] ¬ RED

for each v ÎAdj[u] //explore edge (u,v)

if color[v] = BLACK

DFS-Visit(v)

colour [u] ¬ GRAY

total work

= |Adj[v]|
v ÎV

å = q(E)

Thus running time = q(V + E)

(assuming adjacency list structure)

Other Variants of Depth-First Search

 The DFS Pattern can also be used to

 Compute a forest of spanning trees (one for each call to DFS-

visit) encoded in a predecessor list π[u]

 Label edges in the graph according to their role in the search

(see textbook)

Tree edges, traversed to an undiscovered vertex

Forward edges, traversed to a descendent vertex on the current

spanning tree

Back edges, traversed to an ancestor vertex on the current

spanning tree

Cross edges, traversed to a vertex that has already been

discovered, but is not an ancestor or a descendent

DAGs and Topological Ordering

 A directed acyclic graph (DAG) is a

digraph that has no directed cycles

 A topological ordering of a digraph

is a numbering

v1 , …, vn

of the vertices such that for every

edge (vi , vj), we have i < j

 Example: in a task scheduling

digraph, a topological ordering is a

task sequence that satisfies the

precedence constraints

Theorem

A digraph admits a topological

ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological

ordering of G

v1

v2

v3

v4 v5

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

d
e
g
f

l

….. f

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

d
e
g
l

l

When node is popped off stack, insert at front of linearly-ordered “to do” list.

….. f
Linear Order:

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

d
e
g

l

l,f
Linear Order:

BFS Example

CB

A

E

D

discovery edge

cross edge

A discovered (on Queue)

A undiscovered

unexplored edge

L0

L1

F

CB

A

E

D
L1

F

CB

A

E

D

L0

L1

F

A finished

BFS Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

BFS Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

Analysis

 Setting/getting a vertex/edge label takes O(1) time

 Each vertex is labeled three times

 once as BLACK (undiscovered)

 once as RED (discovered, on queue)

 once as GRAY (finished)

 Each edge is considered twice (for an undirected graph)

 Thus BFS runs in O(|V|+|E|) time provided the graph is

represented by an adjacency list structure

BFS Algorithm with Distances and Predecessors

BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: d[u] = shortest distance d [u] and

p [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u ÎV [G]

d[u] ¬ ¥

p [u] ¬ null

color[u] = BLACK //initialize vertex

colour[s] ¬ RED

d[s] ¬ 0

Q.enqueue(s)

while Q ¹ Æ

u ¬ Q.dequeue()

for each v ÎAdj[u] //explore edge (u,v)

if color[v] = BLACK

colour[v] ¬ RED

d[v] ¬ d[u] + 1

p [v] ¬ u

Q.enqueue(v)

colour [u] ¬ GRAY

Summary of Topics

1. Binary Search Trees

2. Sorting

3. Graphs

